Deep inside the brain: Mapping the dense neural networks in the cerebral cortex

Mammalian brains, with their unmatched number of nerve cells and density of communication, are the most complex networks known. While methods to analyze neuronal networks sparsely have been available for decades, the dense mapping of neuronal circuits is a major scientific challenge. Researchers from the MPI for Brain Research have now conducted connectomic mapping of brain tissue from the cerebral […]

Continue reading »

Deep brain stimulation eases Parkinson’s disease symptoms by boosting dopamine

In a new study of seven people with Parkinson’s disease, Johns Hopkins Medicine researchers report evidence that deep brain stimulation using electrical impulses jumpstarts the nerve cells that produce the chemical messenger dopamine to reduce tremors and muscle rigidity that are the hallmark of Parkinson’s disease, and increases feelings of well-being. “While deep brain stimulation has been used for treating […]

Continue reading »

Deep stimulation improves cognitive control by augmenting brain rhythms

In a new study that could improve the therapeutic efficacy of deep-brain stimulation (DBS) for psychiatric disorders such as depression, a team of scientists shows that, when DBS is applied to a specific brain region, it improves patients’ cognitive control over their behavior by increasing the power of a specific low-frequency brain rhythm in their prefrontal cortex. The findings, published […]

Continue reading »

Effects of deep brain stimulation in patients with Parkinson’s disease

Researchers at Universitätsmedizin Berlin have studied motor and cognitive effects of deep brain stimulation in patients with Parkinson’s disease. Their results show that the adverse cognitive effects of deep brain stimulation are linked to a different neural pathway than that responsible for the treatment’s desired motor effects. This finding will help optimize treatments for patients with Parkinson’s disease. Results from […]

Continue reading »